
CHAPTER 3

GOE and GUE

We quickly recall that a GUE matrix can be defined in the following three equivalent
ways. We leave it to the reader to make the three analogous statements for GOE.

In the previous chapters, GOE and GUE matrices appeared merely as special cases of
Wigner matrices for which computations were easier. However they have a great many neat
properties not shared by other Wigner matrices. The main fact is that the exact density of
eigenvalues of GOE and GUE can be found explicitly! And even more surprisingly, these
exact densities have a nice structure that make them amenable to computations. Many
results that are true for general Wigner matrices are much harder to prove in general but
fairly easy for these two cases. Crucial to the “integrability” properties of GOE and GUE
are their invariance under orthogonal and unitary conjugations respectively.
Exercise 46. (a) Let X and Y be n× n GUE and GOE matrices respectively. Then, for

any fixed U ∈U(n) and P ∈ O(n), we have U∗XU d= X and PtY P d= Y .
(b) If X is a random matrix such that Xi, j, i ≤ j are independent real valued entries and

suppose that PXPt d= X for all P ∈ O(n), then show that X has the same distribution as
cX̃ where c is a constant and X̃ is a GOE matrix. The analogous statement for unitary
invariance is also true.

Remark 47. This is analogous to the following well known fact. Let X be a random vector
in Rn. Then the following are equivalent.

(1) X ∼ Nn(0,σ2I) for some σ2.
(2) Xk are independent and PX d= X for any P ∈ O(n).

To see that the second implies the first, take for P an orthogonal matrix whose first column
is (1/

√
2,1/

√
2,0, . . . ,0) to get X1

d= (X1 +X2)/
√

2. Further, X1,X2 are i.i.d - independence
is given, and choosing P to be a permutation matrix we get identical distributions. It is well
known that the only solutions to this distributional equation are the N(0,σ2) distributions.
If not convinced, use characteristic functions or otherwise show this fact.

What is the use of unitary or orthogonal invariance? Write the spectral decomposition
of a GUE matrix X = V DV ∗. For any fixed U ∈U(n), then UXU∗ = (UV )D(UV )∗. By
the unitary invariance, we see that V DV ∗ has the same distribution as (UV )D(UV )∗. This
suggests that V and D are independent. The only hitch in this reasoning is that the spectral
decomposition is not exactly unique, but it can be taken care of1

1The eigenspace for a given eigenvalue is well-defined. This is the source of non-uniqueness. The set
S of Hermitian matrices having distinct eigenvalues is a dense open set in the space of all Hermitian matrices.
Therefore, almost surely, a GUE matrix has no eigenvalues of multiplicity more than one (explain why). However,
even when the eigenspace is one dimensional, we can multiply the eigenvector by eiθ for some θ ∈ R and that
leads to non-uniqueness. To fix this, let D(n) be the group of n× n diagonal unitary matrices and consider the
quotient space Q = U(n)/D(n) consisting of right cosets. Then, the mapping X → ([V ],D) is one to one and
onto on S. Now observe that for any U , ([UV ],D) d= ([V ],D) and hence [V ] and D are independent.
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30 3. GOE AND GUE

1. Tridiagonalization

Let A be an n×n GOE. Write it as

A =
[

a ut

u B

]

so that a∼ N(0,2), u∼ Nn−1(0, I), B∼GOEn−1, and all three are independent. Condition
on u. Then pick any orthogonal matrix P ∈O(n−1) such that Pu = ‖u‖e1. To be specific,
we can take the transformation defined by

Pv = v−2
〈v,w〉
〈w,w〉w, with w = u− e1.

For any w (= 0, the transformation defined on the left is the reflection across the hyperplane
perpendicular to w. These are also referred to as Householder reflections. Check that P is
indeed unitary and that Pu = e1.

Since P depends on u and B is independent of U , the orthogonal invariance of GOE
shows that A1 := PtBP d= B, that is A1 is a GOE matrix. Also A1 is independent of u and
a. Thus,

C :=
[

1 0t

0 Pt

][
a ut

u B

][
1 0t

0 P

]
=

[
a r1et

1
r1e1 A1

]

where A1 ∼ GOEn−1, a ∼ N(0,1) and r1 = ‖u‖ are all independent. Since C is an or-
thogonal conjugation of A, the eigenvalues of A and C are exactly the same. Observe that
Cj,1 = C1, j = 0 for 2 ≤ j ≤ n. Note that r2

1 = ‖u‖2 has χ2
n−1 distribution.

Now A1 is a GOE matrix of one less order. We can play the same game with A1 and get
a matrix D which is conjugate to A1 but has D1, j = D j,1 = 0 for 2 ≤ j ≤ n−1. Combining
with the previous one, we get

C2 :=




a r1 0t

r1 a′ r2et
1

0 r2e1 D





with the following properties. C2 is conjugate to A and hence has the same eigenvalues.
D ∼ GOEn−2, a,a′ ∼ N(0,2), r2

1 ∼ χ2
n−1, r2

2 ∼ χ2
n−2, and all these are independent.

It is clear that this procedure can be continued and we end up with a tridiagonal matrix
that is orthogonally conjugate to A and such that

(20) Tn =





a1 b1 0 0 . . . 0
b1 a2 b2 0 . . . 0
0 b2 a3 b3 . . . 0
...

...
. . . . . . . . .

...
0 . . . 0 bn−2 an−1 bn−1
0 . . . 0 0 bn−1 an





where ak ∼ N(0,2), b2
k ∼ χ2

n−k, and all these are independent.

Exercise 48. If A is an n×n GUE matrix, show that A is conjugate to a tridiagonal matrix
T as in (20) where ak,bk are all independent, ak ∼ N(0,1) and b2

k ∼ Gamma(n− k,1).

Recall that χ2
p is the same as Gamma( p

2 , 1
2 ) or equivalently, the distribution of 2Y

where Y ∼ Gamma( p
2 ). Thus, we arrive at the following theorem2.

2The idea of tridiagonalizing the GOE and GUE matrices was originally due to Hale Trotter ?. Part of his
original motivation was to give a simple proof of the semicircle law for GOE and GUE matrices.
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Theorem 49. Let T be a tridiagonal matrix as in (20) where ak,bk are all independent.
(1) If ak ∼ N(0,2) and b2

k ∼ χ2
n−k, then the vector of eigenvalues of T has the same

distribution as the vector of eigenvalues of a GOEn matrix.
(2) If ak ∼N(0,2) and b2

k ∼ χ2
2(n−k), then the vector of eigenvalues of T has the same

distribution as the eigenvalues of a GUEn matrix scaled by a factor of
√

2.

2. Tridiagonal matrices and probability measures on the line

Our objective is to find eigenvalue density for certain random matrices, and hence
we must find n− 1 auxiliary parameters in addition to the n eigenvalues (since there are
2n− 1 parameters in the tridiagonal matrix) to carry out the Jacobian computation. The
short answer is that if UDU∗ is the spectral decomposition of the tridiagonal matrix, then
p j = |U1, j|2, 1 ≤ j ≤ n− 1 are the right parameters to choose. However, there are many
conceptual reasons behind this choice and we shall spend the rest of this section on these
concepts.

Fix n ≥ 1 and write T = T (a,b) for the real symmetric n× n tridiagonal matrix with
diagonal entries Tk,k = ak for 1≤ k ≤ n and Tk,k+1 = Tk+1,k = bk for 1≤ k ≤ n−1.

Let Tn be the space of all n×n real symmetric tridiagonal matrices and let T 0
n be those

T (a,b) in Tn with n distinct eigenvalues. Let Pn be the space of all probability measures
on R whose support consists of at most n distinct points and let P 0

n be those elements of
Pn whose support has exactly n distinct points.

Tridiagonal matrix to probability measure: Recall that the spectral measure of a Her-
mitian operator T at a vector v is the unique measure ν on R such that 〈T pv,v〉=

R
xpν(dx)

for all p≥ 0. For example, if T is a real symmetric matrix, write its spectral decomposition
as T = ∑n

k=1 λkuku∗k . Then {uk} is an ONB of Rn and λk are real. In this case, the spectral
decomposition of T at any v ∈ Rn is just ν = ∑n

k=1 |〈v,uk〉|2δλk . Thus ν ∈ Pn (observe that
the support may have less than n points as eigenvalues may coincide). In particular, the
spectral measure of T at e1 is ∑ p jδλ j where p j = |U1, j|2 (here U1, j is the first co-ordinate
of u j).

Given a real symmetric tridiagonal matrix T , let νT be the spectral measure of T at the
standard unit vector e1. This gives a mapping from Tn into Pn which maps T 0

n into P0
n .

Probability measure to Tridiagonal matrix: Now suppose a measure µ ∈ P 0
n is given.

Write µ = p1δλ1 + . . .+ pnδλn where λ j are distinct real numbers and p j > 0. Its moments
are given by αk = ∑ p jλk

j. Let hk(x) = xk, so that {h0,h1, . . . ,hn−1} is a basis for L2(µ)
(how do you express hn as a linear combination of h0, . . . ,hn−1?).

Apply Gram-Schmidt to the sequence h0,h1, . . . by setting ϕ0 = ψ0 = h0, and for k≥ 1
inductively by

ψk = hk−
k−1

∑
j=0
〈hk,ϕ j〉ϕ j, ϕk =

ψk

‖ψk‖L2(µ)
.

This process is stopped when ‖ψk‖= 0. Here are some elementary observations.
(a) Since {h0, . . . ,hn−1} is a linear basis for L2(µ), it follows that {ϕ0, . . . ,ϕn−1} are well-

defined and form an ONB for L2(µ).
(b) For 0≤ k ≤ n−1, ϕk is a polynomial of degree k and is orthogonal to all polynomials

of degree less than k.
(c) As hn is a linear combination of h0, . . . ,hn−1 (in L2(µ)), we see that ψn is well-defined

but ‖ψn‖= 0 and hence ϕn is not defined. Note that ‖ψn‖= 0 means that ψn(λk) = 0
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for all k≤ n, not that ψn is the zero polynomial. In fact, ψn is monic, has degree n and
vanishes at λk, k ≤ n, which implies that ψn(λ) = ∏n

j=1(λ−λ j).
Fix 0≤ k ≤ n−1 and expand xϕk(x) as

xϕk(x)
L2(µ)
=

n

∑
j=0

ck, jϕ j(x), ck, j =
Z

xϕk(x)ϕ j(x)dµ(x).

Now, xϕ j(x) has degree less than k if j < k and xϕk(x) has degree less than j if k < j.
Hence, ck, j = 0 if j ≤ k− 2 or if j ≥ k + 2. Further, ck,k+1 = ck+1,k as both are equal toR

xϕk(x)ϕk+1(x)dµ(x). Thus, we get the three term recurrences

xϕk(x)
L2(µ)
= bk−1ϕk−1(x)+akϕk(x)+bkϕk+1(x), 0≤ k ≤ n(21)

where ak =
Z

xϕk(x)2dµ(x), bk =
Z

xϕk(x)ϕk+1(x)dµ(x).

We adopt the convention that ϕ−1, ϕn, b−1 and bn−1 are all zero, so that these recurrences
also hold for k = 0 and k = n. Since ϕk all have positive leading co-efficients, it is not hard
to see that bk is nonnegative.

From µ ∈ P 0
n we have thus constructed a tridiagonal matrix Tµ := T (a,b) ∈ Tn (cau-

tion: here we have indexed ak,bk starting from k = 0). If µ ∈ P 0
m for some m < n, the Tµ

constructed as before will have size m×m. Extend this by padding n−m columns and
rows of zeros to get a real symmetric tridiagonal matrix (we abuse notation and denote it
as Tµ again) in Tn. Thus we get a mapping µ→ Tµ from Pn into Tn.

The following lemma shows that T → νT is a bijection, and relates objects defined on
one side (matrix entries, characteristic polynomials, eigenvalues) to objects defined on the
other side (the support {λ j}, the weights p j, associated orthogonal polnomials).

Lemma 50. Fix n≥ 1.
(a) The mapping T → νT is a bijection from T 0

n into P 0
n whose inverse is µ→ Tµ.

(b) Let T = T (a,b) and let µ = νT . For 0≤ k ≤ n−1 Pk be the characteristic polynomial
of the top k×k principal submatrix of T and let ψk,ϕk be as constructed earlier. Then
ψk = Pk for k≤ n and hence there exist constants dk such that ϕk = dkPk (for k≤ n−1).

(c) The zeros of ϕn are precisely the eigenvalues of T .
(d) If T = T (a,b) and νT = ∑n

k=1 p jδλ j , then

(22)
n

∏
k=1

b2(n−k+1)
k =

n

∏
k=1

pk ∏
i< j

|λi−λ j|2.

In particular, T 0
n gets mapped into P 0

n (but not onto).

PROOF. (a) Let µ = ∑n
j=1 p jδλ j ∈ Pn and let T = Tµ. For 0≤ k ≤ n−1, let

uk = (
√

p1ϕ0(λk), . . . ,
√

pnϕn−1(λk))t .

The three-term recurrences can be written in terms of T as T uk = λkuk. Thus, uk is an
eigenvector of T with eigenvalue λk. If U is the matrix with columns uk, then the rows
of U are orthonormal because ϕk are orthogonal polynomials of µ. Thus UU∗ = I and
hence also U∗U = I, that is {uk} is an ONB of Rn.

Consequently, T = ∑n
k=1 λkuku∗k is the spectral decomposition of T . In particular,

T pe1 =
n

∑
k=1

|uk,1|2λp
k =

n

∑
k=1

pkλp
k
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because uk,1 =√pkϕ0(λk) =√pk (as h0 = 1 is already of unit norm in L2(µ) and hence
after Gram-Schmidt ϕ0 = h0). Thus, 〈T pe1,e1〉=

R
xpµ(dx) which shows that νT = µ.

This proves the first part of the lemma.
(b) We saw earlier that ϕn is zero in L2(µ). Hence ϕn(λ j) = 0 for 1≤ j ≤ n. Thus, ϕn and

Pn are non-zero polynomials of degree n both of which vanish at the same n points.
Hence, ϕn = dnPn for some constant Pn.

If S is the top k× k principal submatrix of T , then it is easy to see that the first
k orthogonal polynomials of νS are the same as ϕ0, . . . ,ϕk (which were obtained as
orthogonal polynomials of νT ). This is easy to see from the three-term recurrences.
Thus the above fact shows ϕk = dkPk for some constant dk.

(c) By the first part, νT = ∑ p jδλ j where λ j are the eigenvalues of T and p j > 0. The
footnote on the previous page also shows that ϕn vanishes at λ j, j ≤ n. Since it has
degree n, ϕn has only these zeros.

(d) This proof is taken from Forrester’s book. Let Tk denote the bottom (n− k)× (n− k)
principal submatrix of T . Let Qk be its characteristic polynomial and let λ(k)

j , 1≤ j ≤
n− k be its eigenvalues. In particular, T0 = T .

If T = ∑λkuku∗k is the spectral decomposition of T and λ is not an eigenvalue of
T , then (λI−T )−1 = ∑(λ− λk)−1uku∗k . Hence, (λI−T )1,1 = 〈(λI−T )−1e1,e1〉 =
∑ j p j(λ−λ j)−1 for λ (∈ {λ j}. But we also know that (λI−T )1,1 is equal to det(λI−
T1)/det(λI−T ) = Q1(λ)/Q0(λ) . Let λ approach λk to see that

pk = lim
λ→λk

(λ−λk)(λI−T )1,1 = lim
λ→λk

(λ−λk)
Q1(λ)
Q0(λ)

=
Q1(λk)

n
∏

j=1 j (=k
(λk−λ j)

.

Take product over k to get (the left side is positive, hence absolute values on the right)

(23)
n

∏
k=1

pk ∏
i< j

(λi−λ j)2 =
n

∏
k=1

|Q1(λ
(0)
k )|.

Let A be any n× n matrix with characteristic polynomial χA and eigenvalues λi. Let
B be an m×m matrix with characteristic polynomial χB and eigenvalues µ j. Then we
have the obvious identity

n

∏
i=1

|χB(λi)| =
n

∏
i=1

m

∏
j=1

|µ j−λi| =
m

∏
j=1

|χA(µ j)|.

Apply to T0 and T1 to get
n
∏

k=1
|Q1(λ

(0)
k )|=

n−1
∏

k=1
|Q0(λ

(1)
k )|. But by expanding det(λI−T )

by the first row, we also have the identity

Q0(λ) = (λ−a1)Q1(λ)−b2
1Q2(λ).

Therefore Q0(λ
(1)
k )= b2

1Q2(λ
(1)
k ) for k≤ n−1. Thus

n
∏

k=1
|Q1(λ

(0)
k )|= b2n−2

1

n−1
∏

k=1
Q2(λ

(1)
k ).

The right side is of a similar form to the left side, with matrix size reduced by one.
Thus, inductively we get ∏n

k=1 |Q1(λ
(0)
k )| = ∏n−1

k=1 b2n−2k
k . Plugging into (23) we get

the statement of the lemma. !

3. Tridiagonal matrix generalities

Fix n ≥ 1 and write T = T (a,b) for the real symmetric n× n tridiagonal matrix with
diagonal entries Tk,k = ak for 1≤ k ≤ n and Tk,k+1 = Tk+1,k = bk for 1≤ k ≤ n−1. Let Tn
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be the space of all n× n real symmetric tridiagonal matrices and let T 0
n be those T (a,b)

in Tn with bk strictly positive. Let Pn be the space of all probability measures on R whose
support consists of at most n distinct points and let P 0

n be those elements of Pn whose
support has exactly n distinct points.

Given a real symmetric tridiagonal matrix T , let νT be the spectral measure of T at
the standard unit vector e1

3. This gives a mapping from Tn into Pn. For future purpose, we
also give the following idea to find eigenvalues of T .

Fix some λ∈R and suppose we want to find a vector v such that T v = λv. This means

bk−1vk−1 +akvk +bkvk+1 = λvk =⇒ vk+1 =
λvk−bk−1vk−1−akvk

bk
.

where we adopt the convention that b0 = 0. We have also assumed that bk %= 0 for all k
(if bk = 0, the matrix splits into a direct sum of two matrices). Thus, we set v1 = x to be
arbitrary (non-zero)and solve for v1,v2, . . . successively. Denote these as v1(x),v2(x), . . ..
Therefore,

Now suppose a measure µ ∈ P 0
n is given. We can construct a tridiagonal matrix T as

follows. Write µ = p1δλ1 + . . .+ pnδλn where λ j are distinct real numbers and p j > 0. The
moments are given by αk = ∑ p jλk

j. Let hk(x) = xk, so that {h0,h1, . . . ,hn−1} is a basis for
L2(µ). [Q: How do you express hn as a linear combination of h0, . . . ,hn−1?].

Apply Gram-Schmidt to the sequence h0,h1, . . . to get an orthonormal basis {ϕk : 0≤
k ≤ n− 1} of L2(µ). It is easy to see that ϕk is a polynomial of degree exactly k, and is
orthogonal to all polynomials of degree less than k. Fix any k and write

xϕk(x)
L2(µ)
=

n

∑
j=0

ck, jϕ j(x), ck, j =
Z

xϕk(x)ϕ j(x)dµ(x).

Now, xϕ j(x) has degree less than k if j < k and xϕk(x) has degree less than j if k < j.
Hence, ck, j = 0 if j ≤ k− 2 or if j ≥ k + 2. Further, ck,k+1 = ck+1,k as both are equal toR

xϕk(x)ϕk+1(x)dµ(x). Thus, we get the three term recurrences

xϕk(x)
L2(µ)
= bk−1ϕk−1(x)+akϕk(x)+bkϕk+1(x), 0≤ k ≤ n(24)

where ak =
Z

xϕk(x)2dµ(x), bk =
Z

xϕk(x)ϕk+1(x)dµ(x).

We adopt the convention that ϕ−1, ϕn, b−1 and bn−1 are all zero, so that these recurrences
also hold for k = 0 and k = n.

From µ ∈ P 0
n we have thus constructed a tridiagonal matrix Tµ := T (a,b) ∈ Tn (cau-

tion: here we have indexed ak,bk starting from k = 0). If µ ∈ P 0
m for some m < n, the Tµ

constructed as before will have size m×m. Extend this by padding n−m columns and
rows of zeros to get a real symmetric tridiagonal matrix (we abuse notation and denote it
as Tµ again) in Tn. Thus we get a mapping µ→ Tµ from Pn into Tn.

Lemma 51. Fix n≥ 1.
(a) The mapping T → νT is a bijection from Tn into Pn whose inverse is µ→ Tµ.

3The spectral measure of a Hermitian operator T at a vector v is the unique measure ν on R such that
〈T pv,v〉=

R
xpν(dx) for all p≥ 0. For example, if T is a real symmetric matrix, write its spectral decomposition

as T = ∑n
k=1 λkuku∗k . Then {uk} is an ONB of Rn and λk are real. In this case, the spectral decomposition of T

at any v ∈ Rn is just ν = ∑n
k=1 |〈v,uk〉|2δλk . Thus ν ∈ Pn (observe that the support may have less than n points

as eigenvalues may coincide). In particular, if T = UDU∗ the spectral measure of T at e1 is νT = ∑ piδλi , where
pi = |U1,i|2.
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(b) Let µ = νT . Write Pk for the characteristic polynomial of the top k× k submatrix of
T for k ≤ n and let ϕk be the orthogonal polynomials for µ as defined earlier. Then
ϕk = dkPk for for constants dk. In particular, zeros of ϕn are precisely the eigenvalues
of T .

(c) If T = T (a,b) and µ = ∑n
k=1 p jδλ j correspond to each other in this bijection, then

(25)
n

∏
k=1

b2(n−k+1)
k =

n

∏
k=1

pk ∏
i< j

|λi−λ j|2.

In particular, T 0
n gets mapped into P 0

n (but not onto).

PROOF. (a) Let µ = ∑n
j=1 p jδλ j ∈ Pn and let T = Tµ. For 0≤ k ≤ n−1, let

uk = (
√

p1ϕ0(λk), . . . ,
√

pnϕn−1(λk))t .

The three-term recurrences can be written in terms of T as T uk = λkuk. Thus, uk is an
eigenvector of T with eigenvalue λk. If U is the matrix with columns uk, then the rows
of U are orthonormal because ϕk are orthogonal polynomials of µ. Thus UU∗ = I and
hence also U∗U = I, that is {uk} is an ONB of Rn.

Consequently, T = ∑n
k=1 λkuku∗k is the spectral decomposition of T . In particular,

T pe1 =
n

∑
k=1

|uk,1|2λp
k =

n

∑
k=1

pkλp
k

because uk,1 =√pkϕ0(λk) =√pk (h0 = 1 is already of unit norm in L2(µ) and hence
after Gram-Schmidt ϕ0 = h0). Thus, 〈T pe1,e1〉=

R
xpµ(dx) which shows that νT = µ.

This proves the first part of the lemma.
(b) By part (a), the coefficients in the three term recurrence (24) are precisely the entries

of T . Note that the equality in (24) is in L2(µ), which means the same as saying that
equality holds for x = λk, 1 ≤ k ≤ n.

Here is a way to find
T

(c) Let A be any n× n matrix with characteristic polynomial χA and eigenvalues λi. Let
B be an m×m matrix with characteristic polynomial χB and eigenvalues µ j. Then we
have the obvious identity

n

∏
i=1

χB(λi) =
n

∏
i=1

m

∏
j=1

(µ j −λi) = (−1)mn
m

∏
j=1

χA(µ j)

If bk are all positive, the right hand side of (??) is non-zero and hence λk must be
distinct. This shows that T 0

n gets mapped into P 0
n . It is obviously not onto (why?). !

Lemma 52. For T = T (a,b) having the spectral measure ∑n+1
j=1 piδλ j at e0, we have the

identity
n−1

∏
k=0

b2(n+1−k)
k =

n+1

∏
i=1

pi ∏
i< j≤n+1

(λi−λ j)2.

4. More on tridiagonal operators*

This section may be omitted as we shall not use the contents in this course. However,
as we are this close to a very rich part of classical analysis, we state a few interesting facts.
The following four objects are shown to be intimately connected.

(1) Positive measures µ ∈ P (R) having all moments.
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(2) Positive definite sequences α = (αk)k≥0 such that (αi+ j)i, j≥0 is non-negative
definite (that is every principal submatrix has non-negative determinant).

(3) Orthogonal polynomials. Given an inner product on the vector space of all poly-
nomials, one can obtain an orthonormal basis {ϕk} by applying Gram-Schmidt
process to the basis {hk}k≥0 where hk(x) = xk. The sequence {ϕk} (which may
be finite) is called an orthogonal polynomial sequence.

(4) Real symmetric tridiagonal matrices. We now consider semi-infinite matrices,
that is Tk,k = ak, Tk,k+1 = Tk+1,k = bk, for k ≥ 0. Finite matrices are a subset of
these, by padding them with zeros at the end.

Measure to Positive definite sequences: If µ is a measure that has all moments, define the
moment sequence αk =

R
xkdµ(x). Then for any for any m≥ 1 and any u ∈Rm+1, we have

ut (αi+ j)0≤i, j≤m u = ∑
i, j≤m

αi+ juiu j =
Z ∣∣

n

∑
i=0

uixi ∣∣2 µ(dx)≥ 0.

Hence α is a positive definite sequence. It is easy to see that µ is finitely supported if and
only L2(µ) is finite dimnesional if and only if (αi+ j)i, j≥0 has finite rank.
Positive definite sequence to orthogonal polynomials: Let α be a positive definite se-
quence For simplicity we assume that (αi+ j)i, j≥0 is strictly positive definite. Then the
formulas 〈hi,h j〉 = αi+ j define a valid inner product on the vector space P of all polyno-
mials. Complete P under this inner product to get a Hilbert space H.

In H, hk are linearly independent and their span (which is P ) is dense. Hence, ap-
plying Gram-Schmidt procedure to the sequence h0,h1, . . . give a sequence of polynomials
ϕ0,ϕ2, . . . which form an orthonormal basis for H. Clearly ϕk has degree k.
Orthogonal polynomials to tridiagonal matrices: Let ϕk be an infinite sequence of poly-
nomials such that ϕk has degree exactly k. Then it is clear that ϕk are linearly independent,
that hk is a linear combination of ϕ0, . . . ,ϕk.

Consider an inner product on P such that 〈ϕk,ϕ!〉= δk,!. The same reasoning as before
gives the three term recurrences (24) for ϕk. Thus we get ak ∈ R and bk > 0, k ≥ 0. Form
the infinite real symmetric tridiagonal matrix T = T (a,b).
Symmetric tridiagonal operators to measures: Let T be a semi-infinite real symmetric
tridiagonal matrix. Let ek be the co-ordinate vectors in !2(N). Let D = {∑xkek : xk &=
0 finitely often}. This is a dense subspace of !2(N). T is clearly well-defined and linear on
D. It is symmetric in the sense that 〈Tu,v〉= 〈u,T v〉 for all u,v ∈ D and the inner product
is in !2(N).

Suppose T ′ is a self-adjoing extension of T . That is, there is a subspace D′ containing
D and a linear operator T ′ : D → R such that T ′|D = T and such that T ′ is self-adjoint
(we are talking about unbounded operators on Hilbert spaces, hence self-adjointness and
symmetry are two distinct things, and this is not the place to go into the definitions. Consult
for example, chapter 13 of Rudin’s Functional Analysis). Then it is a fact that T ′ has a
spectral decomposition. The spectral measure of T ′ at e0 is a measure. In general there can
be more than one extension. If the extension is unique, then µ is uniquely defined.

This cycle of connections is quite deep. For example, if we start with any positive
definite sequence αk and go through this cycle, we get an OP sequence and a tridiagonal
symmetric operator. The spectral measure of any self-adjoint extension of this operator has
the moment sequence αk. Further, there is a unique measure with moments αk if and only
if T has a unique self-adjoint extension!
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Remark 53. In the above discussion we assumed that α is a strictly positive definite se-
quence, which is the same as saying that the measure does not have finite support or that
the orthogonal polynomial sequence is finite or that the tridigonal matrix is essentially fi-
nite. If we start with a finitely supported measure, we can still go through this cycle, except
that the Gram-Schmidt process stops at some finite n etc.


